8 research outputs found

    Sharpening ECOSTRESS and VIIRS Land Surface Temperature Using Harmonized Landsat-Sentinel Surface Reflectances

    Get PDF
    Land surface temperature (LST) is a key diagnostic indicator of agricultural water use and crop stress. LST data retrieved from thermal infrared (TIR) band imagery, however, tend to have a coarser spatial resolution (e.g., 100 m for Landsat 8) than surface reflectance (SR) data collected from shortwave bands on the same instrument (e.g., 30 m for Landsat). Spatial sharpening of LST data using the higher resolution multi-band SR data provides an important path for improved agricultural monitoring at sub-field scales. A previously developed Data Mining Sharpener (DMS) approach has shown great potential in the sharpening of Landsat LST using Landsat SR data co-collected over various landscapes. This work evaluates DMS performance for sharpening ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) LST (~70 m native resolution) and Visible Infrared Imaging Radiometer Suite (VIIRS) LST (375 m) data using Harmonized Landsat and Sentinel-2 (HLS) SR data, providing the basis for generating 30-m LST data at a higher temporal frequency than afforded by Landsat alone. To account for the misalignment between ECOSTRESS/VIIRS and Landsat/HLS caused by errors in registration and orthorectification, we propose a modified version of the DMS approach that employs a relaxed box size for energy conservation (EC). Sharpening experiments were conducted over three study sites in California, and results were evaluated visually and quantitatively against LST data from unmanned aerial vehicles (UAV) flights and from Landsat 8. Over the three sites, the modified DMS technique showed improved sharpening accuracy over the standard DMS for both ECOSTRESS and VIIRS, suggesting the effectiveness of relaxing EC box in relieving misalignment-induced errors. To achieve reasonable accuracy while minimizing loss of spatial detail due to the EC box size increase, an optimal EC box size of 180–270 m was identified for ECOSTRESS and about 780 m for VIIRS data based on experiments from the three sites. Results from this work will facilitate the development of a prototype system that generates high spatiotemporal resolution LST products for improved agricultural water use monitoring by synthesizing multi-source remote sensing data

    Evapotranspiration estimates derived using thermal-based satellite remote sensing and data fusion for irrigation management in California vineyards

    Get PDF
    Irrigation in the Central Valley of California is essential for successful wine grape production. With reductions in water availability in much of California due to drought and competing water-use interests, it is important to optimize irrigation management strategies. In the current study, we investigate the utility of satellite-derived maps of evapotranspiration (ET) and the ratio of actual-to-reference ET (fRET) based on remotely sensed land-surface temperature (LST) imagery for monitoring crop water use and stress in vineyards. The Disaggregated Atmosphere Land EXchange Inverse (ALEXI/DisALEXI) surface-energy balance model, a multi-scale ET remote-sensing framework with operational capabilities, is evaluated over two Pinot noir vineyard sites in central California that are being monitored as part of the Grape Remote-Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX). A data fusion approach is employed to combine ET time-series retrievals from multiple satellite platforms to generate estimates at both the high spatial (30 m) and temporal (daily) resolution required for field-scale irrigation management. Comparisons with micrometeorological data indicate reasonable model performance, with mean absolute errors of 0.6 mm day−1 in ET at the daily time step and minimal bias. Values of fRET agree well with tower observations and reflect known irrigation. Spatiotemporal analyses illustrate the ability of ALEXI/DisALEXI/data fusion package to characterize heterogeneity in ET and fRET both within a vineyard and over the surrounding landscape. These findings will inform the development of strategies for integrating ET mapping time series into operational irrigation management framework, providing actionable information regarding vineyard water use and crop stress at the field and regional scale and at daily to multi-annual time scales.info:eu-repo/semantics/acceptedVersio

    Mapping Daily Evapotranspiration at Field Scale Using the Harmonized Landsat and Sentinel-2 Dataset, with Sharpened VIIRS as a Sentinel-2 Thermal Proxy

    No full text
    Accurate and frequent monitoring of evapotranspiration (ET) at sub-field scales can provide valuable information for agricultural water management, quantifying crop water use and stress toward the goal of increasing crop water use efficiency and production. Using land-surface temperature (LST) data retrieved from Landsat thermal infrared (TIR) imagery, along with surface reflectance data describing albedo and vegetation cover fraction, surface energy balance models can generate ET maps down to a 30 m spatial resolution. However, the temporal sampling by such maps can be limited by the relatively infrequent revisit period of Landsat data (8 days for combined Landsats 7 and 8), especially in cloudy areas experiencing rapid changes in moisture status. The Sentinel-2 (S2) satellites, as a good complement to the Landsat system, provide surface reflectance data at 10–20 m spatial resolution and 5 day revisit period but do not have a thermal sensor. On the other hand, the Visible Infrared Imaging Radiometer Suite (VIIRS) provides TIR data on a near-daily basis with 375 m resolution, which can be refined through thermal sharpening using S2 reflectances. This study assesses the utility of augmenting the Harmonized Landsat and Sentinel-2 (HLS) dataset with S2-sharpened VIIRS as a thermal proxy source on S2 overpass days, enabling 30 m ET mapping at a potential combined frequency of 2–3 days (including Landsat). The value added by including VIIRS-S2 is assessed both retrospectively and operationally in comparison with flux tower observations collected from several U.S. agricultural sites covering a range of crop types. In particular, we evaluate the performance of VIIRS-S2 ET estimates as a function of VIIRS view angle and cloud masking approach. VIIRS-S2 ET retrievals (MAE of 0.49 mm d−1 against observations) generally show comparable accuracy to Landsat ET (0.45 mm d−1) on days of commensurate overpass, but with decreasing performance at large VIIRS view angles. Low-quality VIIRS-S2 ET retrievals linked to imperfect VIIRS/S2 cloud masking are also discussed, and caution is required when applying such data for generating ET timeseries. Fused daily ET time series benefited during the peak growing season from the improved multi-source temporal sampling afforded by VIIRS-S2, particularly in cloudy regions and over surfaces with rapidly changing vegetation conditions, and value added for real-time monitoring applications is discussed. This work demonstrates the utility and feasibility of augmenting the HLS dataset with sharpened VIIRS TIR imagery on S2 overpass dates for generating high spatiotemporal resolution ET products

    Determining Evapotranspiration by Using Combination Equation Models with Sentinel-2 Data and Comparison with Thermal-Based Energy Balance in a California Irrigated Vineyard

    No full text
    A new approach is proposed to derive evapotranspiration (E) and irrigation requirements by implementing the combination equation models of Penman–Monteith and Shuttleworth and Wallace with surface parameters and resistances derived from Sentinel-2 data. Surface parameters are derived from Sentinel-2 and used as an input in these models; namely: the hemispherical shortwave albedo, leaf area index and water status of the soil and canopy ensemble evaluated by using a shortwave infrared-based index. The proposed approach has been validated with data acquired during the GRAPEX (Grape Remote-sensing Atmospheric Profile and Evapotranspiration eXperiment) in California irrigated vineyards. The E products obtained with the combination equation models are evaluated by using eddy covariance flux tower measurements and are additionally compared with surface energy balance models with Landsat-7 and -8 thermal infrared data. The Shuttleworth and Wallace (S-W S-2) model provides an accuracy comparable to thermal-based methods when using local meteorological data, with daily E errors < 1 mm/day, which increased from 1 to 1.5 mm/day using meteorological forcing data from atmospheric models. The advantage of using the S-W S-2 modeling approach for monitoring ET is the high temporal revisit time of the Sentinel-2 satellites and the finer pixel resolution. These results suggest that, by integrating the thermal-based data fusion approach with the S-W S-2 modeling scheme, there is the potential to increase the frequency and reliability of satellite-based daily evapotranspiration products
    corecore